Подробный расчет мощности радиаторов отопления. Какая информация нужна
- Подробный расчет мощности радиаторов отопления. Какая информация нужна
- Расчет мощности радиатора калькулятор. Калькулятор расчета количества секций радиаторов
- Расчет мощности стального радиатора отопления. Расчет по площади
- Расчет мощности отопления. Как определиться с ними их количественно?
- Тепловой расчет радиатора охлаждения. Часть 1: Расчет тепловыделения и радиатора при постоянном токе
- Расчет панельных радиаторов отопления калькулятор. Расчет стальных радиаторов отопления (калькулятор)
Подробный расчет мощности радиаторов отопления. Какая информация нужна
Прежде чем браться за расчет мощностей обогревателя, соберите «анамнез».
Это вся информация о конкретном помещении, где планируется установить отопительные приборы.
- Климат местности и температура воздуха в отопительный сезон. Выбор обогревателей, расчет их количества и мощности будет сильно отличаться в средней полосе и северной части нашей страны.
- Расположение помещения и конкретно окон (север, юг, восток, запад)
- Назначение помещения: гостиная, детская, кухня, подсобное помещение, чердак.
- Материал и толщина стен.
- Количество окон, дверей, их конфигурация (обычные или французские окна), наличие и тип балконов (лоджия, мансарда).
- Вентиляция — естественная и принудительная.
Затем нужно определиться с материалом будущих радиаторов. Обычно это происходит еще на этапе дизайн-проекта, но, если речь идет о квартире с уже установленными приборами, а вы хотите их поменять, решение о замене принимают на первых стадиях ремонта. Количество секций радиаторов на отдельно взятую комнату зависит от их вида:
- Стальные имеют мощность 100-150 Вт на секцию
- Чугунные — 160 Вт
- Биметаллические — 170-180 Вт
- Алюминиевые — самые мощные, 180-200 Вт.
И еще один параметр. Приведенные выше значения мощности радиаторов разных материалов — идеальные. Их производитель указывает в сопроводительной документации, но они слегка оторваны от реальности. На мощности секции радиатора отопления влияет показатель температуры теплоносителя. Если вы его знаете, расчет получится точнее. Так называемый параметр DT учитывает температуру теплоносителя на входе и выходе. Максимальная мощность секции радиатора достигается при параметре 90/70. Но такая температура редка для российской отопительной системы. Стандартная цифра — 67-75/53-55 °С.
Расчет мощности радиатора калькулятор. Калькулятор расчета количества секций радиаторов
Расчет количества секций радиатора по площади помещения можно выполнить вручную. При этом придется выполнять большое количество вычислений, поэтому мы решили автоматизировать процесс. Онлайн-калькулятор расчета количества секций радиаторов отопления сделает это быстрее и убережет вас от ошибок.
Чтобы подсчитать количество секций для всего дома или квартиры, необходимо делать вычисления для каждого помещения отдельно. Иначе вы рискуете неправильно распределить радиаторы по комнатам.
Во время ввода данных в калькулятор расчета батарей отопления на на площадь комнаты, от вас потребуется указать тип подключения батарей. Подробнее о них вы можете прочитать в статьях оби.
В последнем пункте онлайн-калькулятора вам нужно будет указать тепловую мощность радиатора отопления. Узнать ее можно в спецификации производителя. У каждой модели этот показатель отличается. Если нет документации под рукой, рекомендуем прочитать статью;.
Если вы хотите узнать общее количество тепла, которое необходимо для обогрева комнаты, в последнее поле введите единицу.
Помните, что полученный результат верен только в том случае, если радиаторы отопления установлены правильно. Узнать как это сделать можно в этой статье: .
Хотите получить помощь мастера, специалиста в этой сфере? Переходите на. Это полностью бесплатный сервис, где вы найдете профессионала, который решит вашу проблему. Вы не платите за размещение объявления, просмотры, выбор подрядчика.Если вы сами мастер своего дела, то зарегистрируйтесь наи получайте поток клиентов. Ваша прибыль в одном клике!
Расчет мощности стального радиатора отопления. Расчет по площади
Это самый простой вариант определения более-менее точного количества необходимого для обогрева тепла. При расчете основной отправной точкой выступает площадь квартиры или дома, где осуществляется организация отопления.
Значение площади каждого помещения имеется в плане квартиры, а для вычисления конкретных значений по расходу тепла на помощь приходит СНиП:
- Для средней климатической зоны норма для жилого помещения определена, как 70-100 Вт/1 м2.
- Если температура в регионе опускается ниже -60 градусов, уровень обогрева каждого 1 м2необходимо увеличить до 150-220 Вт.
Для расчета панельных радиаторов отопления по площади, кроме приведенных норм, можно использовать калькулятор. В учет обязательно берут мощность каждого обогревающего прибора. Значительные перерасходы лучше не допускать, т.к. по мере увеличения итоговой мощности увеличивается также количество батарей в системе. В случае с центральным отоплением подобные ситуации не являются критичными: там каждая семья оплачивает только фиксированную стоимость.
Совсем другое дело в автономных отопительных системах, где последствием любого перерасхода является рост оплаты за объем теплоносителя и работу контура. Тратить лишние финансы непрактично, т.к. за полный отопительный сезон может набежать приличная сумма. Определив с помощью калькулятора, сколько точно нужно тепла на каждую комнату, легко узнать, сколько приобретать секций.
Для простоты на каждом отопительном приборе указывается объем выделяемого им тепла. Эти параметры обычно содержаться в сопроводительной документации. Арифметика здесь простая: после определения количества тепла полученную цифру нужно разделить на мощность батареи. Полученный после этих несложных операций результат и является числом секций, необходимых для восполнения утечек тепла в зимнее время.
Для наглядности лучше разобрать простой пример: допустим, что нужно всего 1600 Ватт, при площади каждой секции в 170 Ватт. Дальнейшие действия: производится деление общего значения 1600 на 170. Выходит, что приобретать нужно 9,5 секций. Округление можно осуществить в любую сторону, на усмотрение владельца дома. Если в помещении есть дополнительные источники тепла (например, кухонная плита), то округлять нужно в сторону уменьшения.
В противоположную сторону рассчитывают, если в комнате имеются балконы или просторные окна. То же самое касается угловых помещений, или если стены плохо утеплены. Расчет очень простой: главное при этом не забывать про высоту потолков, т.к. она не всегда стандартная. Значение имеет также тип используемого для возведения здания строительного материала и вид оконных блоков. Поэтому данные расчета мощности стальных радиаторов отопления нужно воспринимать, как приблизительные. Калькулятор в этом отношении куда удобнее, т.к. в нем предусмотрены корректировки по стройматериалам и характеристикам помещений.
Расчет мощности отопления. Как определиться с ними их количественно?
Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².
Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?
Так что лучше применить иной, более «скрупулезный» метод подсчета , в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора .
Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.
И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.
Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.
Ниже расположен калькулятор , а под ним будут размещены необходимые краткие пояснения по работе с программой.
Тепловой расчет радиатора охлаждения. Часть 1: Расчет тепловыделения и радиатора при постоянном токе
Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе.
Для примера рассмотрим расчет радиатора для MOSFET-а IRLR024N
В этом примере предполагается, что MOSFET включается и долгое время находится в полностью открытом состоянии. Например, переключение производится не чаще чем с частотой 1 Гц.
В даташите нас интересуют параметры теплового сопротивления Junction-to-Case (сопротивление переход-корпус), Junctione-to-Ambient (PCB mount) (переход-окружающая среда при монтаже на 1кв.дюйм медной заливки на плате), Junction-to-Ambient (корпус-окружающая среда).
RθJC = 3.3 К/Вт
RθJApcb= 50 К/Вт
RθJA = 110 К/Вт
(Кельвины и Цельсии не играет роли, так как речь о разницах).
Цифра 110 К/Вт означает, то при выделяемой мощности 1Вт разница температур между внешней средой и переходом будет 110 градусов. Например, если границе корпус-воздух будет 40 градусов, то это значит, что переход внутри транзистора имеет температуру 40+110=150 градусов. Если выделяется 2Вт, то внутри будет 40+110*2=260 градусов.
Предположим, что напряжение на затворе будет 3.3В. А ток будет 3А. Из графика «Typical Transfer Characteristics» находим, что при напряжении 3.5В ток составляет 8А. Т.е. сопротивление составляет 0,4375 Ом. При этом смотрим на график «Normalized On-Resistance Vs. Temperature» и видим, что при 90 градусах сопротивление растет в 1.5 раза.
Допускаем по дизайну нагрев до 90 градусов, а сопротивление считаем 0.4375*1.5= 0,6563 Ом.
Получаем, что рассеиваться на транзисторе будет P=I^2*R=3*3*0,6563=5,9067 = 6 Вт.
Предполагается, что транзистор будет работать в окружении, где температура воздуха будет до 30 градусов (что очень оптимистично, так как он греет воздух вокруг себя).
Итак, запас по температуре составляет 90-30=60 градусов. Получается что максимальное общее теплового сопротивления равно (90-30)/6Вт=10 К/Вт
При этом сопротивление переход-корпус уже съело 3.3 К/Вт. У нас остается 8.3 К/Вт.
Монтаж радиатора будет производится на силиконовый клей. Предположим, что наш клей - HC910. Проводимость его 1.7 Вт/м*К.
У нас площадь приклеивания будет 0.25д*0.24д=0.01м*0.009м=0,0000054 кв.м.
Толщина слоя нанесения 0.0001м (0.1 мм). Эта оценка подтверждена документацией на подобные клеи.
Тепловое сопротивление слоя клея равно = толщина/(площадь*проводимость)=0,53 К/Вт
Остается 7.77 К/Вт на сам радиатор. Выбираем в магазине каком-нибудь.
И это будет довольно крупный радиатор. Примерно 10х10х5 см за нормальные деньги.
Теперь решим вопрос, а какой допустимый ток, при котором можно обойтись без радиатора вообще.
Возьмем вариант, когда транзистор припаян к площадке на плате площадью 1кв. дюйм. RθJApcb= 50 К/Вт. Предположим, что все устройство работает в коробочке и воздух в ней, за счет других компонентов и этого MOSFET-а, может нагреваться до 50 градусов. Предел нагрева для выбранного транзистора 175 градусов. Но мы возьмем максимум 125. Тогда максимальная допустимая мощность будет (125К-50К) / 50К/Вт= 1,5 Вт.
Если же он не припаян к площадке, то RθJA = 110 К/Вт, и получаем максимальную мощность (125К-50К) / 110К/Вт= 0,6 Вт.
Расчет по корпусу приведенный здесь более реалистичный, чем с радиатором. Однако, если устройство должно работать в различных условиях, то требуется внесение понижающего коэффициента для высот. Например, для высоты 2000м коэффициент 0.8 (т.е. не 0.6Вт, а 0,5Вт) для высоты 3500м – 0.75.
Расчет панельных радиаторов отопления калькулятор. Расчет стальных радиаторов отопления (калькулятор)
Специалисты компании «Термомир» подскажут расчет стальных радиаторов отопления (калькулятор) и помогут выбрать нужную модель.
Радиаторы (батареи) отопления являются неотъемлемой частью оборудования как для дома с индивидуальной системой обогрева, так и для квартиры с центральным отоплением.
Каждый радиатор имеет основные характеристики: номинальную мощность (1 секции либо всего прибора), межосевое расстояние (200, 350, 500, 600 мм), материал, рабочее давление, размеры, боковое или нижнее подключение.
Выбор радиатора зависит, в первую очередь, от площади обогреваемого помещения: для стандартных помещений (одно обычное окно, одна дверь, потолок высотой около 3 м, не первый этаж и не угловая комната) необходимо от 90 до 125 Вт мощности на 1 кв.м площади . Если, например, потолки выше стандартных, если помещение имеет большое остекление или плохую теплоизоляцию, то расчетную мощность радиаторов необходимо увеличивать. Более подробно о выборе радиаторов в наших материалах:
Расчет мощности и количества секций радиатора
Секционные радиаторы состоят из отдельных частей (от 4 до 16 и более секций) и формируются как конструктор. Общая мощность всего радиатора будет зависит от количества секций и равна суммарной мощности всех частей.
Панельные радиаторы - это единый стальной корпус с внутренними углублениями для циркуляции теплоносителя. Мощность такого устройства зависит от его размеров (от поверхности теплоотдачи и объема теплоносителя).
По материалу радиаторы отопления различаются на стальные, чугунные, биметаллические и алюминиевые , которые имеют свои плюсы и минусы.
Алюминиевые радиаторы имеют высокую теплоотдачу, элегантный дизайн, малый вес и глубину (80-100 мм), но рекомендуются для систем с нейтральным теплоносителем, поскольку они подвержены внутренней коррозии из-за контакта с агрессивными жидкостями и металлами, а также склонны к «завоздушиванию» системы.
Биметаллические радиаторы отопления лояльны к теплоносителю с агрессивными показателями, могут работать при высоком давлении, устойчивы к гидро- и пневмоударам, но отличаются меньшей теплоотдачей и более высокой ценой.
Стальные радиаторы относятся к панельному типу, представляют собой единый корпус, в котором 1, 2 или 3 панели сварены из стальных листов. Из достоинств отметим высокую теплоотдачу, различные типоразмеры, подключение термостатов и адекватную стоимость. Минусы тоже есть – низкое рабочее давление, чувствительность к загрязненному теплоносителю и гидроударам.
Чугунные радиаторы чаще всего используются как дизайнерские батареи стиля ретро.
По межосевому расстоянию радиаторы делятся на группы: радиаторы 200 мм, радиаторы 350 мм , радиаторы 500 мм , радиаторы 600 мм и т.д.
В нашем ассортименте представлена качественная продукция фирм-производителей радиаторов отопления: российские Rifar (Рифар) , отечественные Royal Thermo (Роял Термо) , китайские Rommer (Роммер) , итальянские Global (Глобал) , немецкие Kermi (Керми) и Buderus, польские Purmo (Пурмо) и т.д.
Подготовить расчет количества секций радиаторов, выбрать лучшие радиаторы отопления и купить их по низким ценам вам помогут наши технические специалисты.